New Bisbibenzyls from Dendrobium falconeri

by Boonchoo Sritularak and Kittisak Likhitwitayawuid*

Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand (phone: +66-2-218-8360; fax: +66-2-218-8357; e-mail: lkittisa@chula.ac.th)

Two new bis(bibenzyls) named dendrofalconerols A and B (1 and 2, resp.) were isolated from the stems of *Dendrobium falconeri* (Orchidaceae), along with six known phenolic compounds which included docosanoyl (E)-ferulate, tetracosyl (Z)-p-coumarate, tetracosyl (E)-p-coumarate, 2-(p-hydroxy-phenyl)ethyl p-coumarate, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde. 2-(p-Hydroxyphenyl)ethyl p-coumarate displayed a marginal inhibitory effect against *Herpes simplex* virus type 1, whereas the remaining compounds were devoid of antiherpetic activity.

Introduction. – The genus *Dendrobium* (Orchidaceae) is represented by more than 1,100 species widely distributed throughout Asia, Europe, and Australia, and there are about 150 species of *Dendrobium* in Thailand [1]. Plants of this genus have been known to produce a wide variety of chemical compounds, including alkaloids, bibenzyls, phenanthrenes, fluorenones, sesquiterpenes, coumarins, steroids, and polysaccharides [2]. As a part of our continuing studies on phenolics from Thai medicinal plants [3-5], we investigated the chemical constituents of the stems of *Dendrobium falconeri* Hook., (locally known in Thai as 'Ueang Sai Wisut'), a plant growing in the northern region of Thailand with no previous record of chemical examination.

A MeOH extract prepared from the aerial parts of this plant, after repetitive chromatography, afforded two new bisbibenzyls named dendrofalconerol A (1) and dendrofalconerol B (2), along with six known phenolic compounds. These compounds were then evaluated for their inhibitory effect on the growth of *Herpes simplex* virus.

Results and Discussion. – Compound **1** was obtained as a brown amorphous powder. The HR-ESI-TOF-MS (positive ion mode) exhibited an $[M + H]^+$ ion at m/z 545.2175 (calc. for $C_{32}H_{33}O_8$: 545.2176), suggesting the molecular formula $C_{32}H_{32}O_8$. The IR spectrum showed absorption bands at 3396 (OH), 3002, 1511 (benzene ring), 1454 (CH₂), and 1245 (ether) cm⁻¹. The UV absorption at 279 nm was in agreement

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

with a bibenzyl structure [6]. The ¹H-NMR and HSQC spectra of 1 showed ten aromatic H-atoms at $\delta(H) 6.14 - 7.12$. In the aliphatic region of the ¹H-NMR spectrum, the following H-atom signals were observed: a CH H-atom at $\delta(H)$ 4.09 (dd, J=5.5, 7.0, H-C(7)); three pairs of CH₂ H-atoms at δ (H) 2.66–2.72, 2.76–2.82 (2m, CH₂(8)), 2.72-2.76, 2.86-2.90 (2m, CH₂(7')), and 2.79-2.85 (m, CH₂(8')); four MeO groups at δ (H) 3.70 (s, MeO-C(12)), 3.73 (s, MeO-C(12')), 3.82 (s, MeO-C(1')), and 3.89 (s, MeO-C(1) (atom numbering according to [6]). The ¹³C-NMR and DEPT spectra displayed 32 C-atom signals, corresponding to four aromatic MeO groups, three CH₂ groups, one aliphatic CH group, ten aromatic CH groups, and 14 aromatic quaternary C-atoms. Based on these spectroscopic data, the constitutional formula of 1 was proposed to be a bis(bibenzyl) structure bearing three OH and four MeO groups. Comparison of the ¹H- and ¹³C-NMR data of **1** with those of nobilin E, a bis(bibenzyl) identified from *Dendrobium nobile* [6], revealed their structural similarity, particularly in rings A and A' with regard to the substitution patterns and the points of connection. On ring A of 1, H–C(4), resonating at δ (H) 6.14 (s), displayed a NOESY interaction with H-C(7), and 3-bond coupling with C(2), C(6), and C(7). For ring A', H-C(6') of 1 appeared at $\delta(H)$ 6.65 (s). This H-atom displayed NOESY cross peaks with MeO-C(1') (δ (H) 3.82) and H-C(7'), as well as HMBC correlations with C(2'), C(4'), and C(7'). Similar to nobilin E [6], **1** had ring A connected to ring A' through a CH bridge and an ether linkage, as shown by the HMBC correlations from H-C(7) to C(4), C(6), C(3'), and C(5'). Compound **1**, however, differed from nobilin E in the substitution pattern of the B and B' rings which were p-methoxylated. The first evidence came from the 1H,1H-COSY spectrum which showed signals for a pair of doublets at $\delta(H)$ 6.61 and 6.67 (2 H each, J=8.5) assignable to H-C(10/14) and H-C(11/13) of ring B, and another pair at $\delta(H)$ 7.12 and 6.82 (2 H each, J=8.5) attributable to H-C(10'/14') and H-C(11'/13') of ring B'. This was corroborated by the NOESY cross peaks between H–C(11/13) and MeO–C(12) (δ (H) 3.70), and between H-C(11'/13') and MeO-C(12') (δ (H) 3.73). Further supporting information was obtained from the fragment ions at m/z 423 and 302 in the EI-MS, which were produced through two successive losses of m/z 121 from the M^+ ion. The formation of the m/z 121 ion ($[MeOC_6H_4CH_2]^+$) was due to the cleavage of the C-C bond between C(7) and C(8), or between C(7') and C(8'), respectively. On the basis of the above spectral evidence, the structure of 1 was established as shown, and the compound was given the trivial name dendrofalconerol A. Complete ¹H- and ¹³C-NMR assignments of $\mathbf{1}$ were obtained through analysis of the HMBC spectrum and are summarized in the Table.

Compound **2** was isolated as a brown amorphous powder. A molecular formula of $C_{30}H_{28}O_7$ was deduced from its $[M + H]^+$ ion at m/z 501.1913 (calc. for $C_{30}H_{29}O_7$: 501.1914). The UV absorption and the IR bands of **2** were similar to those of **1**, suggesting a bisbibenzyl nucleus. The first bibenzyl unit of **2** should have a structure similar to that of **1**, as indicated from the NMR data (¹H- and ¹³C-NMR, HSQC, and HMBC) obtained for this moiety (*Table*). In support of this, the EI-MS of **2** showed fragment ions at m/z 121 and 379. In **2**, a CH bridge and an ether linkage were also involved in the connection between the bibenzyl units, as evident from the HMBC correlations from H–C(7) to C(6) and C(3') of rings A and A', respectively. On ring A', a OH group was situated at C(1'), since H–C(2') appeared as a *doublet* at δ (H) 6.38

	$\delta(\mathrm{H})$		δ(C)		HMBC ^a)	
	1	2	1	2	1	2
1	-	-	136.8 (s)	136.7 (s)	MeO-C(1)	MeO-C(1)
2	_	-	137.3^{b} (s)	137.5^{b} (s)	4	4
3	_	-	141.6^{b} (s)	$141.7^{\rm b}$ (s)	4	4
4	6.14(s)	6.24(s)	109.7(d)	109.7(d)	7	7
5	-	-	117.8(s)	117.6(s)	7, 8	7,8
6	_	-	139.9 (s)	140.0(s)	4,7	4,7
7	4.09 (dd, J = 5.5, 7.0)	4.17 $(t, J = 6.0)$	39.6 (<i>d</i>)	38.9 (<i>d</i>)	4, 8	4, 8
8	2.76 - 2.82 (m), 2.66 - 2.72 (m)	2.75 - 2.81 (m), 2.69 - 2.75 (m)	45.4 (<i>t</i>)	45.5 (<i>t</i>)	7, 10, 14	7, 10, 14
9	_	_	131.6(s)	131.4(s)	7, 11, 13	7, 11, 13
10	6.61 (d, J = 8.5)	6.55 (d, J = 8.5)	131.3(d)	131.4(d)	8, 14	8, 14
11	6.67 (d, J = 8.5)	6.65(d, J = 8.5)	113.9(d)	113.8(d)	13	13
12	-	-	159.1 (s)	159.1 (s)	10, 11, 13, 14,	10, 11, 13, 14,
					MeO-C(12)	MeO-C(12)
13	6.67 (d, J = 8.5)	6.65 (d, J = 8.5)	113.9(d)	113.8(d)	11	11
14	6.61 (d, J = 8.5)	6.55(d, J = 8.5)	131.3(d)	131.4(d)	8, 10	8, 10
1′	-	-	147.1(s)	157.2(s)	6', MeO - C(1')	2', 6'
2'	_	6.38 (d, J = 2.5)	134.0(s)	101.8(d)	6'	6'
3′	_	-	142.3(s)	154.9 (s)	7	2', 7
4′	_	-	119.1 (s)	115.7 (s)	6', 7', 7, 8	2', 6', 7, 8
5'	-	-	129.5 (s)	141.9 (s)	6', 7', 8',7	7′, 8′, 7
6'	6.65(s)	6.56 (d, J = 2.5)	108.5(d)	111.9 (d)	7′	2', 7'
7′	2.86-2.90(m), 2.72-2.76(m)	2.88-2.92(m), 2.70-2.74(m)	34.4 <i>(t)</i>	34.8 (<i>t</i>)	6', 8'	6', 8'
8'	2.79 - 2.85(m)	2.73 - 2.84(m)	37.5(t)	37.1(t)	7', 10', 14'	7', 10', 14'
9′	-	-	134.6(s)	133.4(s)	7', 11', 13'	7', 8', 11', 13'
10′	7.12 (d, J = 8.5)	7.08 (d, J = 8.5)	130.2(d)	130.1(d)	8', 14'	8', 14'
11′	6.82(d, J = 8.5)	6.76(d, J = 8.5)	114.5(d)	115.9(d)	13'	13'
12'	-	-	158.9 (s)	156.5 (s)	10', 11', 13', 14', MeO-C(12')	10', 11', 13', 14
13'	6.82 (d, J = 8.5)	6.76(d, J = 8.5)	114.5 (d)	115.9 (d)	11'	11′
14′	7.12 (d, J = 8.5)	7.08 (d, J = 8.5)	130.2(d)	130.1(d)	8', 10'	8', 10'
MeO-C(1)	3.89(s)	3.78(s)	61.2(q)	61.3(q)	_	_
MeO-C(1')	3.82(s)	-	56.6(q)	-	-	-
MeO-C(12)	3.70(s)	3.69(s)	55.3 (q)	55.3(q)	_	_
MeO-C(12')	3.73 (s)	-	55.4 (q)	-	-	_

Table. ¹*H*- and ¹³*C*-*NMR Data of Compounds* **1** and **2**. Recorded in (D_6) acetone at 500 and 125 MHz, resp.; δ in ppm, *J* in Hz.

(J=2.5) due to its *m*-coupling with H–C(6'), which was assigned from its 3-bond correlation to C(7'). HMBC Connectivities were also observed from H–C(2') to C(4'), and from C(4') to CH₂(7). The resonances of H–C(10'/14') at δ (H) 7.08 (2 H, *d*, J = 8.5) and H–C(11'/13') at δ (H) 6.76 (2 H, *d*, J = 8.5) in the COSY spectrum suggested a *p*-hydroxylated *B*' ring, and this was confirmed by the fragment ion at *m*/*z* 107

742

 $([HOC_6H_4CH_2]^+)$ in the EI-MS. Thus, it was concluded that **2** had a structure as shown, and the trivial name dendrofalconerol B was given to the compound.

So far, the only other known bis(bibenzyl) with this skeleton is nobilin E, which has been previously found in *Dendrobium nobile* [6]. Thus, the occurrence of phenolics of this type is indeed rare, and appears to be characteristic for this genus. It should be mentioned that a number of bisbibenzyls have been reported from liverworts; however, most of them contain a macrocyclic structure [7].

The other phenolics isolated from this plant were identified by comparison of their spectroscopic data with reported values. They were esters of cinnamic acid derivatives, namely docosanoyl (E)-ferulate [8], tetracosyl (Z)-p-coumarate [9], tetracosyl (E)-p-coumarate [10], and 2-(p-hydroxyphenyl)ethyl p-coumarate [11], as well as benzenoids including p-hydroxybenzoic acid and p-hydroxybenzaldehyde [12].

All the isolated compounds were evaluated for their anti-HSV-1 activity using the plaque reduction method [3][13]. Only 2-(*p*-hydroxyphenyl)ethyl *p*-coumarate exhibited marginal activity, with an EC_{50} value of 352.1 µM against HSV-1 (acyclovir EC_{50} 0.25 µM).

B. S. is grateful to the *Thailand Research Fund* and the *Commission on Higher Education* for financial support (Grant MRG 5180015). We thank Prof. T. Phadungcharoen for the plant identification and Prof. V. Lipipun for the antiviral activity assays.

Experimental Part

General. Optical rotations: Perkin-Elmer 341 polarimeter. UV Spectra: Milton Roy Spectronic 3000 Array spectrophotometer. CD Spectra: Jasco J-715 spectropolarimeter. IR Spectra: Perkin-Elmer FT-IR 1760X spectrophotometer. NMR Spectra: Bruker Avance DPX-300 FT-NMR spectrometer or Varian Unity INOVA-500 NMR spectrometer. MS: Micromass LCT mass spectrometer (ESI-TOF-MS) or Thermo-Finnigan polaris Q mass spectrometer (EI-MS).

Plant Material. The fresh stems of *D. falconeri* were purchased from Jatujak market, Bangkok, in December 2006, and identified by Prof. *Thatree Phadungcharoen* (Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University). A voucher specimen (BS-122549) is on deposit at the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand.

Extraction and Isolation. The dried stems (800 g) were powdered and extracted with MeOH ($2 \times$ 10 l, 2 d each) at r.t. The MeOH extract was filtered and evaporated under reduced pressure to give a viscous mass (73 g). This material was subjected to vacuum-liquid chromatography on SiO₂ (AcOEt/ hexane gradient) to give 11 fractions, Frs. A-K. Fr. D (2.34 g) was separated by CC (SiO₂; CH₂Cl₂/ hexane, gradient and AcOEt/hexane 1:4) to give 13 fractions (Frs. I-XIII). Fr. IV (99 mg) was further separated by gel filtration chromatography (Sephadex LH20, acetone), and then by CC (SiO₂; CH₂Cl₂/ hexane 1:1) to yield docosanoyl (E)-ferulate (24 mg). Separation of Fr. VIII (154 mg) was performed on Sephadex LH20 (acetone), and then on SiO₂ (CH₂Cl₂) to afford tetracosyl (Z)-p-coumarate (20 mg). Fr. IX (124 mg) was separated by CC (SiO₂; CH₂Cl₂) to give 19 fractions, Frs. IX.1-IX.19. Tetracosyl (E)-p-coumarate (27 mg) was obtained from Frs. IX.2-IX.10. Fr. F (1.19 g) was separated by CC (SiO₂; AcOEt/hexane, 1:4) to give 25 fractions. Frs. F.15-F.19 (342 mg) were combined and chromatographed over Sephadex LH20 (acetone) and then purified by CC (SiO₂; AcOEt/hexane, 1:4) to yield phydroxybenzaldehyde (10 mg). Separation of Fr. I (1.51 g) was performed by CC over SiO₂, eluted with AcOEt/hexane (gradient) to give 35 fractions. p-Hydroxybenzoic acid (110 mg) and 2-(p-hydroxybenyl)ethyl p-coumarate (29 mg) were obtained from Frs. I.20-I.21 and Fr. I.27, resp. Fr. I.25 (216 mg) gave 1 (29 mg) and 2 (12 mg) after purification on Sephadex LH20 (MeOH).

Dendrofalconerol A (=4,6-Dimethoxy-9-(4-methoxybenzyl)-8-[2-(4-methoxybenzyl)ethyl]-9H-xanthene-2,3,5-triol; **1**). Brown amorphous powder. $[a]_{D}^{28} = -1.0 (c = 0.1, MeOH)$. UV (MeOH): 279 (3.95). CD (c = 0.05, MeOH): 202 (+54672), 213 (+112900), 220 (-137032), 242 (-4758), 250 (-5115), 259 (-2427). IR (film): 3396, 3002, 1511, 1454, 1245. ¹H- and ¹³C-NMR: *Table*. EI-MS: 544 (1, *M*⁺), 423 (100), 302 (39), 287 (15), 121 (12). HR-ESI-TOF-MS: 545.2175 ([*M*+H]⁺, C₃₂H₃₃O⁺₈; calc. 545.2176).

Dendrofalconerol B (=8-[2-(4-Hydroxyphenyl)ethyl]-4-methoxy-9-(4-methoxybenzyl)-9H-xanthene-2,3,6-triol; **2**): Brown amorphous powder. $[a]_{D}^{28} = -3.0$ (c = 0.1, MeOH). UV (MeOH): 280 (3.75). CD (c = 0.05, MeOH): 202 (+15608), 213 (+11918), 219 (-6964), 245 (-4806), 251 (-1688), 258 (-2112). IR (film): 3392, 3005, 1511, 1457, 1245. ¹H- and ¹³C-NMR: Table. EI-MS: 500 (5, M^+), 393 (10), 379 (100), 272 (95), 121 (83), 107 (41). HR-ESI-TOF-MS: 501.1913 ($[M + H]^+$, $C_{30}H_{29}O_7^+$; calc. 501.1914).

REFERENCES

- G. Seidenfaden, 'Orchid genera in Thailand XII. *Dendrobium* Sw.', Opera Botanica 83, Copenhagen, 1985.
- [2] G.-N. Zhang, L.-Y. Zhong, S. W. Annie Bligh, Y.-L. Guo, C.-F. Zhang, M. Zhang, Z.-T. Wang, L.-S. Xu, *Phytochemistry* 2005, 66, 1113.
- [3] K. Likhitwitayawuid, S. Chaiwiriya, B. Sritularak, V. Lipipun, Chem. Biodiversity 2006, 3, 1138.
- [4] K. Likhitwitayawuid, C. Klongsiriwet, V. Jongbunprasert, B. Sritularak, S. Wongseripipatana, Arch. Pharm. Res. 2006, 29, 199.
- [5] R. Wangteeraprasert, K. Likhitwitayawuid, Heterocycles 2008, 75, 403.
- [6] X. Zhang, J.-K. Xu, J. Wang, N.-L. Wang, H. Kurihara, S. Kitanaka, X.-S. Yao, J. Nat. Prod. 2007, 70, 24.
- [7] J. Gorham, 'The biochemistry of the stilbenoids', Chapman & Hall, London, 1995.
- [8] A. Ulubelen, G. Topcu, S. Olçal, Phytochemistry 1994, 37, 1371.
- [9] L. Manfei, H. Yoshimasa, X. Guojun, N. Masatake, W. Houming, *Chin. Tradit. Herb. Drugs* 1992, 23, 227.
- [10] J. C. del Río, A. Gutiérrez, J. Agric. Food Chem. 2006, 54, 4600.
- [11] R. Kaewamatawong, N. Ruangrungsi, K. Likhitwitayawuid, J. Nat. Med. 2007, 61, 349.
- [12] J. Hayashi, T. Sekine, S. Deguchi, Q. Lin, S. Horie, S. Tsuchiya, S. Yano, K. Watanabe, F. Ikegami, *Phytochemistry* 2002, 59, 513.
- [13] K. Likhitwitayawuid, B. Supudompol, B. Sritularak, V. Lipipun, K. Rapp, R. F. Schinazi, *Pharm. Biol.* 2005, 43, 651.

Received August 5, 2008